If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9a^2+18a+6=0
a = 9; b = 18; c = +6;
Δ = b2-4ac
Δ = 182-4·9·6
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{3}}{2*9}=\frac{-18-6\sqrt{3}}{18} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{3}}{2*9}=\frac{-18+6\sqrt{3}}{18} $
| .1(x+50)+1.7x=86 | | 3x+1=-6x+1 | | (8x+15)-(7x+17)=180 | | (8x+15)=(7x+17)=180 | | 4+2x÷6x=12÷5x+2÷15 | | 2+3+15+1.25=35x | | Y(8x+15)=180 | | 78+6×x=114 | | (8x+15)=180 | | -6x+12/5=7/10+2/5* | | -6(x+2)/5=7/10+2/5* | | 3y-2=15y+58 | | 3m=7m+8 | | (8x+19)=(9x+9)=180 | | 8y(8+3y)/4+9y=77 | | (8x+19)-(9x+9)=180 | | -45=5(1+2x)-5x | | (Y+23)=63(2x-17)=180 | | 23+w=56 | | (x)/(60)=-(7)/(12) | | 7m – 9 + m = 40 | | 8(s+6)=80 | | √3^x+1=3√9 | | 14=3v+2 | | 4d-4=15 | | 12w2+8w=7w2–w+14 | | 9n-32=40 | | –10−4z=10−7z+7 | | −9/8=v−1/2 | | 8+2f=14 | | 22k=19 | | X^2-16x+55=3 |